

1. General OUTDOOR OFC-FIG.8, SM(0.9) LOOSE TUBE BLACK

1. Scope

This specification covers the construction and properties of single jacket, selfsupporting, dry core loose tube aerial fiber optic cable for aerial application. The optical fibers are in compliance with ITU-T Recommendation G.652.D.

2. Quality Assurance

FURUKAWA takes pride in being an industry leader recognized for producing a quality product. To ensure a continuing level of quality in production cables, a quality system consistent with ISO 9001 "Quality Management System", is provided for all optical fiber and fiber optic cables.

The adequacy of all materials is assured through incoming inspection, source inspection, or vendor certified data. Fiber is measured and classified before being placed into inventory, and then selected from inventory to satisfy customer order requirements. Inspection of cable construction characteristics is the responsibility of the employees producing the product. All cables are tested for compliance to customer specified transmission requirements in Final Test. Adequacy of this quality control system is assured through product and process audits conducted by the internal quality improvement organization.

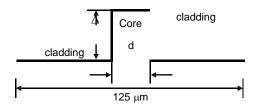
FURUKAWA is supported by standards such as

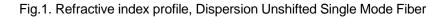
- Electronic Industries Association (EIA)
- Telecommunications Industry Association (TIA)
- International Telecommunications Union (ITU)
- International Electrotechnical Commission (IEC)
- American Society for Testing and Materials (ASTM)
- The RoHS Directive 2002/95/EC and its amendment directives
- TIS 2166-2548 (2005) Optical fiber cables Part 3-20 : Outdoor cables- Family specification for optical self-supporting aerial telecommunication cables

All of optical fiber cable element should comply with RoHS Directive 2002/95/EC and its amendment directives with the Laboratory that fully comply with the requirements of ISO/IEC 17025-05, The Basic Rules, IECEE 01: 2008-11 and Rules of Procedure IECEE 02: 2008-10, and the relevant IECEE CB-Scheme Operational Documents

1.3 General Fiber Optic Cable Characteristics

High quality optical fibers made with pure silica-based glass have very low loss for infrared wavelengths and can be used to carry large amounts of information for very long distances in optical communication systems. High fiber strength is obtained by protecting the surface of the glass fiber with thin coating layers of polymeric materials.


The coated fibers are then placed in cable structures having additional layers to protect the fiber during the rigors of outside plant installation and to provide long term reliable operation in the outside plant environment. The design philosophy in meeting these objectives is to provide high quality, rugged, well-tested fiber optic cables, which are compact and have a high strength-to-weight ratio. Compact fiber optic cables are easier to handle and install in the field and provide longer length for field installation.


2. Optical Fiber Requirements

FURUKAWA Zero Water Peak (ZWP) Single Mode Optical Fiber consists of a germanium doped core and a silica cladding. The fiber is fully compatible with other commercially available matched cladding fibers. FURUKAWA ZWP Single Mode Optical Fiber is the industry's first fiber designed for use with transmission systems operating in entire wavelength region from 1280 to 1625 nm. Current systems operate in either the 2nd window (1280-1325 nm) or the 3rd window (1530-1565 nm). The 5th window from 1350 to 1450 nm has not been available because of higher attenuation (up to 1 dB/km) over much of the region. FURUKAWA ZWP fiber enables usage over this much wider range because of a new manufacturing process, which practically eliminates the incorporation of OH ions (water) into the fiber. A concentration of several parts per billion (ppb) of OH ions in a conventional single mode fiber core cause the attenuation in the region around 1385 nm (the "water" peak) to be up to 300% higher than in the 1310 nm region. With FURUKAWA ZWP fiber, the attenuation in the 5th window is always less than that in the 2nd window.

FURUKAWA Fibers feature a dual UV curable acrylate coating system, which provides unparalleled performance in a wide range of environmental conditions. The advantages of this coating structure are excellent resistance to micro-bending induced losses, superior hydrolytic stability and long term preservations of color code integrity. The coating is easily strippable using mechanical methods.

(d = core diameter)

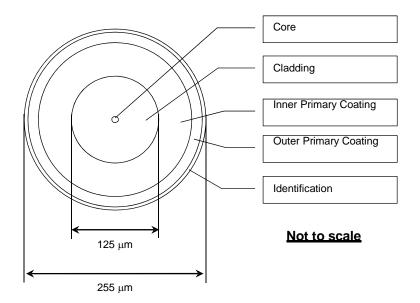


Fig. 2 Cross Section View of Dispersion Unshifted Single Mode Fiber

Table 1. Dispersion-Unshifted,	Single Mode Fiber	Requirements	(ITU-T Rec. G.652.D)

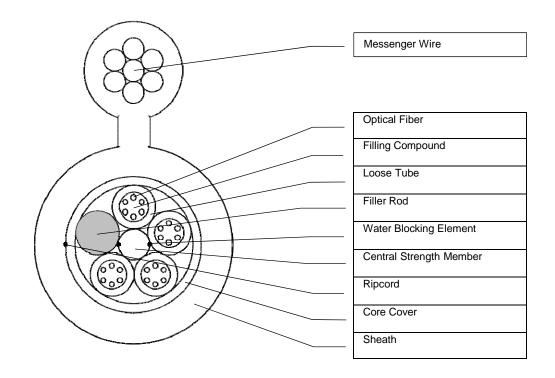
Fiber attributes			
Item		Description	
Core		Germania (GeO ₂) doped Silica (SiO ₂)	
Core Diameter		8.3 μm	
Cladding		Silica (SiO ₂)	
Primary Coating		2 layers of UV curable resin	
Index of refraction	Difference	0.36%	
Group refractive in	ndex *	1.469 @ 1310 nm and 1550 nm	
Cladding Diamete	r	125 ± 1 μm	
Cladding Non-Circ	cularity	≤1 %	
Core/Cladding Co	ncentricity error	≤ 0.5 μm	
Coating Diameter	(uncolored)	245 ± 5 μm	
Coating/Cladding	Concentricity error	≤ 12 μm	
Colored Fiber Dia		255 ± 10 μm	
Mode Field Diame	eter	9.2 ± 0.4 μm @ 1310 nm	
		$10.4 \pm 0.6 \ \mu m$ @ 1550 nm	
Proof test stress		The entire length of fiber is subjected to tensile	
Attenuetien	400 turner 50 mm diameter	stress greater than 0.69 GPa.	
Attenuation with Bending	100 turns, 50 mm diameter	≤ 0.05 dB @ 1310 nm ≤ 0.10 dB @ 1550 nm	
With Donaing	1 turns, 32 mm diameter	≤ 0.50 dB @ 1550 nm	
Zero-Dispersion V	Vavelength (λ_0)	$1300 \le \lambda_0 \le 1324 \text{ nm}$	
•	sion Slope (S _{0max}) at λ_0	≤ 0.092 ps/(nm².km)	
-	sion coefficient, $D(\lambda)$	$D(\lambda) = \lambda S_{0max} / 4 \bullet [1 - \{\lambda_0/\lambda\}^4] \text{ ps/(nm} \bullet \text{km})$	
		$(\lambda = Operating Wavelength)$	
		≤ 3.5 ps/(nm.km) @ 1288 ~ 1339 nm	
		≤ 18 ps/(nm.km) @ 1550 nm	
Coating Strip Force		$1.3 \text{ N} (0.3 \text{ lbf}) \le F \le 8.9 \text{ N} (2.0 \text{ lbf})$	
(@ 0 °C to +45 °C) Numerical Aperture		0.13 ± 0.01	
·		attributes	
Item Description			
Attenuation coefficient		•	
		Max. 0.36 dB/km, Typ. 0.34 dB/km @ 1310 nm Max. 0.36 dB/km, Typ. 0.32 dB/km @ 1383 nm	
		Max. 0.25 dB/km, Typ. 0.21 dB/km @ 1565 nm	
		Max. 0.25 dB/km, Typ. 0.21 dB/km @ 1550 nm Max. 0.35 dB/km, Typ. 0.24 dB/km @ 1625 nm	
Cabled Cut-off Wavelength (λ_{cc})		$\leq 1260 \text{ nm}$	
Polarization Mode Dispersion coefficient (PMD)		< 0.20 ps/√km	

* Optical time domain reflectometers (OTDRs) require the setting of the fiber's group refractive index in order to calculate and display distance. The above is a group refractive index values for OTDR settings.

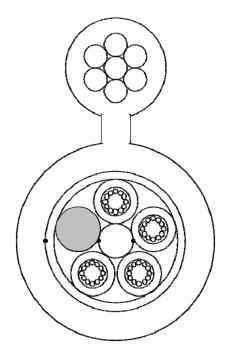
3. Cable Core / Cable Sheaths Characteristics and Construction These core/sheath combinations are described in detail below.

Table 2. Construction of single jacket, self-supporting dry core loose tube aerial fiber optic cable.

Item		Description	
Number of fibers		Up to 30 Fibers 36 ~ 60 Fibers	
Optical Fiber	Construction	Table 1	
Filling Compound	Material	Thixotropic Jelly Compound	
Loose Tube	Material	(PBT) Polybutylene Terephthalate with color code	
	Fiber per Tube	Max. 6	Max. 12
	Number	1 ~ 5	3 ~ 5
	Assembly	Fibers are brought together with the filling compound and placed in the extruded tube	
Filler Rod	Material	Plastic rod, natural color	
	Number	0 ~ 4	0 ~ 2
Stranding	Method	Reverse oscillating lay (ROL) technique (SZ Direction)	
Central Strength Member	Material	FRP (Fiberglass Reinforced with Plastic)	
Water Blocking Elements	Material	Suitable Water Swellable Materials (Dry-Core Technology)	
Core Covering	Material	Water Blocking Tape	
	Assembly	The tape shall be wrapped longitudinally over the cable core	
Ripcord	Material	Polyester cord	
Sheath	Material	UV-Proof Black High Density Polyethylene	
	Thickness (Cable)	Nominal	1.5 mm
	Thickness (Messenger Wire)	Nominal 0.8 mm	
Messenger Wire	Material	Extra High Strength Galvanized Steel Wire	
Diameter		Nominal 7/1.32 mm	
Overall Cable Height (Approx.) mm		16.0	17.5
Cable Diameter (Approx.) mm		8.5	10.5
Cable Weight (Approx.) kg/km		145	175
Structure		Fig. 3	


Note:

- The nominal value of a parameter refers to a design target. The thickness of the thinnest point shall not be measured at the groove of the ripcord.


- Manufacturer may use additional suitable tape(s), thread(s) or dielectric elements into suitable place in the cable for manufacturer's reason.

24 Fibers

48 Fibers

Not to scale

Fig. 3 Cross-section view of single jacket, self-supporting dry core loose tube aerial fiber optic cable.

No.	Fiber Identification	Loose Tube Identification
1	Blue	Blue
2	Orange	Orange
3	Green	Green
4	Brown	Brown
5	Slate	Slate
6	White	-
7	Red	-
8	Black	-
9	Yellow	-
10	Violet	-
11	Pink	-
12	Aqua	-

Table 4. TIA/EIA-598-A Color Code for Fiber and Loose tube Identification

- <u>Note</u>: All fibers and tube used in our cables are color code to facilitate individual identification. Unless otherwise specified, all cables employ the standard industry color code system in accordance with the Munsell color shades as specified in EIA/TIA-359 and EIA/TIA-598A, Color Coding of Fiber Optic Cables. Anyway the color code can be changed by customer's request.
 - Unless otherwise requested by the customer, all cable jackets are black.

Item		Specification
Maximum Span Length		80 m
Minimum installation Sag		1.0% of Maximum Span Length
Maximum Wind Velocity		100 km/hr
Installation/Operation Temperature		- 40°C to + 70°C
Storage/Shipping Temperature		- 40°C to + 75°C
Maximum Tensile Load Installation/Operation		6,000/3,000 N
Minimum bending Radius	During Installation Or handling	20 x External Diameter of Cable
	During Service Or fixed	10 x External Diameter of Cable

Table 5. Mechanical Specification of the cable

<u>Note</u>: At the maximum allowable pulling tension, fiber will not be subjected to a stress higher than one-third the fiber proof stress (0.33%).

4. Mechanical / Environmental Test Requirements and cable sheath test. This section covers the mechanical and environmental test for the cable.

Table 6. Mechanical, Environmental T	Test Requirements for the cables
--------------------------------------	----------------------------------

ltem	Spec	Method
Torsion Test	Maximum attenuation change ≤ 0.10 dB	TIA/EIA-455-85A or IEC-60794-1-2-E7
	at 1550 nm. There shall be no cracking,	Test sample; 2 m Maximum
	splitting, or similar damage of the cable	Load; per table 2, EIA-455-85A
	exterior.	Rotation; \pm 180 degree, 10 cycles
Tensile	Maximum attenuation change ≤ 0.10 dB	IEC-60794-1-2-E1A
Performance Test	at 1550 nm and no fiber strain more than	Test sample; 25 m Minimum
	1/3 of fiber proof test (0.33%). There	Sheave Dia.; 480 mm (Universal)
	shall be no cracking, splitting, or similar	Load; maximum rated tensile load
	damage of the cable exterior.	Duration; 1 hour
Impact Test	Maximum attenuation change ≤ 0.10 dB	TIA/EIA-455-25B or IEC-60794-1-2-E4
	at 1550 nm.	Starting Energy; depend on cable diameter,
		per Table 1 EIA/TIA-455-25B
		Number Impact; 25
		Hammer Head Radius; 12.5 mm
		Test sample; Approx. 20 m
Repeated	Maximum attenuation change ≤ 0.10dB	TIA/EIA-455-104A or IEC-60794-1-2-E6
Bending Test	at 1550 nm. There shall be no cracking,	Sheave Dia.; 20 x cable dia.
	splitting, or similar damage of the cable	Number Cycles ; 25
	exterior.	Load; per Table 2, EIA/TIA-455-104A
		Test Sample ; Approx. 20 m
Compression Test	Maximum attenuation change \leq 0.10dB	TIA/EIA-455-41A or IEC-60794-1-2-E3
	at 1550 nm. There shall be no cracking,	Load ; 2,200 N (220N/cm) non-armored
	splitting, or similar damage of the cable	Duration; 10 minutes
	exterior.	Test sample ; Approx. 20 m
Cable Bending	Maximum attenuation change \leq 0.10dB	IEC-60794-1-2-E11B
Test	at 1550 nm. There shall be no cracking,	Mandrel Diameter : 20 x cable outer diameter
	splitting, or similar damage of the cable	Cycles : 1
	exterior.	
Water Penetration	No fluid leaks through the open cable	TIA/EIA-455-82B
Test	end after 1 hour.	Fluid Pressure; 1 m static head or equivalent
		pressure.
		Test sample ; 3 m
		Duration ; 1 hour
Temperature	Max. Attenuation change ≤ 0.10dB/km	TIA/EIA-455-3A or IEC-60794-1-2-F1
Cycling Test	at 1550 nm at operating temp. There	Time at Temp. ; Table of EIA/TIA-455-3A.
	shall be no cracking, splitting, or similar	Temp. Range ;-40°C (±2°C)Minimum
	damage of the cable exterior.	+70°C (±2°C)Maximum
		Number of Cycles; Not less than 1 cycle

- 5. Cable Marking and Shipping Requirements
- 1. Sheath marking

The sheath marking is available upon customer's request. The sheath marking shall be printed (Hot Stamp) on the outer sheath of the cable with white color in one-meter intervals.

- 2. Reels
 - 1. The cable will be delivered at the required length on a wooden reel. The reels are designed to prevent damage to the cable during shipment and installation.
 - 2. The cable shall be delivered on wooden reel in standard manufacturing length of 4,000 m. (Special length is available upon request, but the cost may be increased.)
 - 3. The diameter of the barrel shall be not less than 30 times of the outer diameter of the cable.
 - 4. Circumference shall be completely enclosed with wooden battens, these battens shall be secured by nails to each flange. There are metallic bands are strapped about the wooden batten to help secure the battens to the reel.
 - 5. To provide access for testing, the inner end of the cable protrudes through the inside of the reel. The end is securely kept on the side of the flange to protect it during transport and storage. The length of the inner end is typically 1 meter. The cable ends are securely fastened so as not to protrude beyond any portion of the reel in an unprotected manner and to prevent the cable from becoming loose in transport.
- 2. Sealing and Cable Termination

The both end of cable shall be sealed with a suitable rubber cap or heat shrinkable cap to prevent ingress of moisture.

4. Information Accompanying the Reel

The following information is securely attached to the reel.

- Manufacturer's Name
- Customer's Name
- Customer Order Number
- Customer Part Number (if Applicable)
- Kind & Size (Cable Description)
- Order Length
- Outside sequential
- Inside sequential

- Drum No.
- Reel ID.
- Ship Length
- Gross Weight
- Net Weight
- Date

- END OF SPECIFICATION -